Brennan Tate said:
Here is a quick (& dirty) example -
IV Cav, with Sup Fire, Grand Battle Plan, Mass Assault, Trench Warfare - quite common / achievable early on.
With basic Armoured Car (allowing for less soft, more Tough, more Defence & org bonus) This is more than 30% better @ resiting than with out. It is also more than 30% better vs soft, and 66% better vs hard. Cost is 3.6 TC vs 3.0 and 11 MP vs 9. Net positive on all fronts by my count.
Heh-Heh... I
love your example. Obviously, you didn't actually
do the math.
Let's take a quick look, shall we? I will use YOUR example (Cavalry-IV, with or without Basic-AC).
First a few definitions of terms: Battle Winning Ability can be calculated from the force's ability to inflict damage on the enemy (itself dependant on numbers and on HA/SA firepower vs enemy Softness) multiplied by the force's ability to sustain damage and still keep fighting (itself dependant on numbers and average unit ORG).
Effective Firepower can be calculated by multiplying the SA x enemy Softness and then adding the HA x enemy Hardness. This will give the unit's ability to inflict damage on a target of the stated Softness/Hardness.
Since we are trying to decide whether the units are better off brigaded or un-brigaded, we will skirmish them against each other, using three different comparison-stacks... one of constant-Manpower, one of constant-IC-days, and one of constant-TC-load.
Cost/Time discounts for Hawk and Free Market will be ignored, since they affect both sides equally and will not change the ratios or results at all. There are no Cost discounts for Cavalry or Armored Cars in the Land Doctrines considered. Note that any slider-move towards Standing Army will benefit ONLY the un-brigaded force, since it raises the average unit ORG and thus reduces the proportionate effect of the AC's +5 bonus ORG. I will assume a centered Standing Army slider.
The units under consideration:
Basic Armored Car : 3 IC x 60 days = 180 IC-days
+5 ORG, -5 Softness,
+2 SA, +1 T, +1 D
+2 MP, +0.4 Supply, +0.16 Oil
Cav-IV : 9 IC x 95 days, 855 IC-days
ORG 56, 9 MP, 95 Softness
SA: 12, HA: 2, T: 14, D: 14
Supply: 1.5, Oil: 1.5, TC: 3
Cav-IV/AC: 1035 IC-days total
ORG 61, 11 MP, 90 Softness
SA: 14, HA: 2, T: 15, D: 15
SC: 1.9, OC: 1.66, TC: 3.56
Now the Battle Winning Ability calculations:
Constant Manpower: 11 Cav (99 MP) vs 9 Cav-AC (99 MP)
Cav: (11 units x ((0.9 Softness x 12 SA) + (0.1 Hardness x 2 HA)) x 11 units x 56 ORG) = 74,536 BWA
Cav-AC: (9 units x ((0.95 Softness x 14 SA) + (0.05 Hardness x 2 HA)) x 9 units x 61 ORG) = 66,209 BWA
The un-brigaded Cavalry
beats the Cavalry-AC by 12.6% in Battle Winning Ability.
Constant IC-days: 6 Cav (5130 IC-days) vs 5 Cav-AC (5175 IC-days)
(Note that I've given the Cavalry-AC an
extra 45 IC-days bonus)
Cav: (6 units x ((0.9 Softness x 12 SA) + (0.1 Hardness x 2 HA)) x 6 units x 56 ORG) = 22,176 BWA
Cav-AC: (5 units x ((0.95 Softness x 14 SA) + (0.05 Hardness x 2 HA)) x 5 units x 61 ORG) = 20,435 BWA
The un-brigaded Cavalry beats the Cavalry-AC by 8.5% in Battle Winning Ability... even after giving the Cavalry-AC a 45 IC-day advantage.
Constant TC-load: 13 Cav (39 TC) vs 11 Cav-AC (39.16 TC)
(Again, I've given the Cavalry-AC a small advantage in TC-limit)
Cav: (13 units x ((0.9 Softness x 12 SA) + (0.1 Hardness x 2 HA)) x 13 units x 56 ORG) = 104,104 BWA
Cav-AC: (11 units x ((0.95 Softness x 14 SA) + (0.05 Hardness x 2 HA)) x 11 units x 61 ORG) = 98,905 BWA
The un-brigaded Cavalry beats the Cavalry-AC by 5.3% in Battle Winning Ability... even after giving them a TC-limit advantage.
The brigaded Cavalry lose all three battles to the un-brigaded force.
Now... you may feel that this comparison isn't entirely fair, since I did not consider the extra +1 Toughness or +1 Defensiveness conferred by the AC brigades... so let's consider it now.
The extra Toughness and Defensiveness adds 7% to the unit's base Toughness or Defensiveness... but in the above examples, the brigaded units are facing more shots-per-hour-per-target than the un-brigaded force, since they are outnumbered. Since these are on-demand stats... only used one point at a time to block incoming hits... the extra Toughness or Defensiveness will only play a role if the unit that possesses it thereby avoids being dog-piled while it's opponent cannot avoid that fate.
Let's see if that's the case:
First battle (Constant-Manpower): The un-brigaded Cavalry faces 12.27 shots per hour per unit, and has a Defensiveness of 14. Extra Defensiveness would not affect the combat. The brigaded Cavalry faces 14.67 shots per hour per unit, and has a Defensiveness of 15. Only the brigaded Cavalry... not the un-brigaded Cavalry... is in danger of being dog-piled by random target selection fluctuations.
Second battle (Constant IC-days): The un-brigaded Cavalry faces 11.67 shots per hour per unit, and has a Defensiveness of 14. Extra Defensiveness would not affect the combat. The brigaded Cavalry faces 14.4 shots per hour per unit, and has a Defensiveness of 15. Again, only the brigaded Cavalry... not the un-brigaded Cavalry... is in danger of being dog-piled by random target selection fluctuations.
Third battle (Constant TC-load): The un-brigaded Cavalry faces 11.84 shots per hour per unit, and has a Defensiveness of 14. Extra Defensiveness would not affect the combat. The brigaded Cavalry faces 14.18 shots per hour per unit, and has a Defensiveness of 15. Only the brigaded Cavalry... not the un-brigaded Cavalry... is in danger of being dog-piled by random target selection fluctuations.
In all three battles, the result is the same... the extra Toughness and Defensiveness conferred by the AC brigade is not only too little to give any advantage... it's even too little to make the brigaded unit as safe from dog-piling as the un-brigaded unit already is.
The un-brigaded Cavalry wins hands down, by all four measures. I love your example...